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Abstract

Various quantum algebras are shown to be catenary, i.e., all saturated chains of prime ideals
between any two fixed primes have the same length. Further, Tauvel’s formula relating the
height of a prime ideal to the Gelfand—Kirillov dimension of the corresponding factor ring is
established. These results are obtained for coordinate rings of quantum affine spaces, for quantized
Weyl algebras, and for coordinate rings of complex quantum general linear groups, as well as
for quantized enveloping algebras of maximal nilpotent subalgebras of semisimple complex Lie
algebras.

1991 Math. Subj. Class.: 16D30, 16E99, 16P40, 16P90, 17B37

0. Introduction

Our aim in this paper is to investigate the prime ideal structure of various algebras
arising in the theory of quantum groups under the general heading “quantum coordinate
rings”. These algebras are expected to exhibit a structure similar to that of enveloping
algebras of solvable Lie algebras, and our results support this philosophy. (See [3, 5,
9] for additional evidence.) Here, we concentrate on the property of catenarity. Recall
that a ring R is catenary if, for any two prime ideals P < Q of R, all saturated chains
of prime ideals between P and Q have the same length. It is a famous result of Gabber
that enveloping algebras of finite dimensional solvable Lie algebras are catenary (see,
e.g., [7} or a combination of {18, Appendix Al] and [16, Ch. 9]); the second author has
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extended this result to enveloping algebras of finite dimensional solvable Lie superal-
gebras [17]. The method of proof in both cases is the same: establish good homological
properties of the ring, then connect homological properties with growth, and, finally,
control the growth properties of prime factors by finding normal elements. This method
yields in addition the following useful height formula established by Tauvel [30] for
enveloping algebras of solvable Lie algebras: height(P) + GKdim(R/P) = GKdim(R)
for all prime ideals P in R.

In Section 1, we start by writing down the abstract properties sufficient to prove
catenarity results in this way, and in succeeding sections we show that various quan-
tum algebras have these properties. In particular, we obtain catenarity and the height
formula for coerdinate rings of quantum affine spaces, for quantized Weyl algebras,
and for coordinate rings of complex quantum general linear groups, as well as for
quantized enveloping algebras of maximal nilpotent subalgebras of semisimple com-
plex Lie algebras. (In the second and third cases, certain parameters are restricted to
be nonroots of unity.)

1. Catenarity: Gabber’s method abstracted

1.1. Throughout this section, let & be a field and R an affine (finitely generated) noethe-
rian k-algebra. We show how existing technology can be combined to provide an
axiomatic basis for Gabber’s catenarity theorem. The homological aspects of this ar-
gument are contained in work of Bjérk, who has shown that a version of Gabber’s
maximality principle follows from the Auslander-Gorenstein condition [2]. The remain-
der of the proof runs parallel with the treatment of Gabber’s theorem in [16], given
the assumption of a suitable supply of normal elements.

The algebra R is said to be Auslander-Gorenstein provided (a) the injective di-
mension of R (as both a right and a left R-module) is finite, and (b) for any integers
0 <i < j and any finitely generated (right or left) R-module M, we have Exth(N,R) =
0 for all R-submodules N of Exté(M,R). If, in addition, the global dimension of R
is finite, then R is said to be Auslander-regular. The grade of a finitely generated
R-module M is defined to be

j(M) :=inf{j > 0 | Ext}(M,R) # 0}.

We shall denote the Gelfand-Kirillov dimension of an R-module M by GKdim(M)
(see [16 or 24, Ch. 8] for basic properties of this dimension). The algebra R is called
Cohen—Macaulay (or CM) if j(M)+GKdim(M ) = GKdim(R) for all finitely generated
R-modules M.

A nonzero R-module M is pure (with respect to grade) if j(N) = j(M) for all
nonzero submodules N of M. The corresponding property with grade replaced by GK-
dimension is called GK-homogeneity. More precisely, M is called s-homogeneous if
M and all its nonzero submodules have GK-dimension s.
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Theorem 1.2 (Gabber’s maximality principle). Let R be Auslander—Gorenstein and M
a finitely generated R-module. Suppose that M is pure, and that M is an R-module
containing M such that every finitely generated submodule of M is pure. Then there
is a unique maximal member in the set

{finitely generated R-modules X | M CX CM and j(X/M) > j(M) +2}.

Proof. See [2, Theorem 1.14]. O

Corollary 1.3. Let R be Auslander—Gorenstein and Cohen—Macaulay, and M a finitely
generated R-module. Suppose that GKdim(R) < oo, that M is GK-homogeneous, and
that M is an R-module containing M such that every finitely generated submodule of
M is GK-homogeneous. Then there is a unique maximal member in the set

{finitely generated R-modules Y |M CY CM and
GKdim(Y/M) < GKdim(M) — 2}.

Proof. Translate the theorem from the setting of grade to that of GK-dimension using
the CM hypothesis: GKdim(N ) = GKdim(R)—j(N) for all finitely generated R-modules
N, O

If P < Q are prime ideals of the noetherian k-algebra R with height(Q/P) = 1,
then GKdim(R/P) > GKdim(R/Q) + 1 [16, Corollary 3.16]. This inequality can be
strict, and the next theorem, the key to catenarity, gives conditions sufficient to ensure
equality.

Theorem 1.4. Let R be Auslander—Gorenstein and Cohen—Macaulay with GKdim(R)
finite, and let P < Q be prime ideaks of R with height(Q/P) = 1. If there exists an
element x € Q\ P that is normal modulo P, then GKdim(R/P) = GKdim(R/Q) + 1.

Proof. Set 4 = R/P and s = GKdim(4) < oc. Set b = x + P € A, and note that
b4 = Ab by hypothesis. Let A[»~'] be the localization of 4 with respect to the Ore
set {b" | n=0,1,2,...}. Now consider 4 and A[b~'] as right R-modules. Note that 4
is s-homogeneous by [16, Lemma 5.12], and that A[6~'] is the union of submodules
b™"4 = Ab~", all of which are isomorphic to 4 (as one-sided modules). Hence, every
finitely generated submodule of 4[6~!] is s-homogeneous. Let ¥ be the unique maximal
finitely generated extension of 4 in A[b~'] with GKdim(¥/4) < s — 2 provided by
Corollary 1.3. Since Y is finitely generated, there is an integer n such that ¥ C57"4.
Now conjugation by b acts as an automorphism on both 4 and A[b™"], and it follows
from the maximality of Y that b~'Yb = Y; thus bY = Y.

Let / = r.anny(Y/bY), and note that I # 0 (because b € I). Then Y1 CbY and so
YI' Cb'Y for each positive integer ¢. In particular,

"= gL C Y C R Y C b A = bArC QJP,

and consequently 7 C Q/P. Thus Q/P is a prime ideal of 4 minimal over /.
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Now GKdim(Y/bY) < GKdim(4/I) < GKdim(4) — 1 = s — 1, by [16, Proposition
3.15]. On the other hand, ¥/bY = b~'Y/Y. Hence, by the maximality of Y, it follows
that the module Y/bY is (s — 1)-homogeneous. Now Lemmas 2 and 3 of [17] applied
to Y/bY show that

GKdim(R/Q) = GKdim(4/(Q/P)) = s — 1 = GKdim(R/P) —1. O

1.5. We say that the prime spectrum of the ring R has normal separation provided
that for any pair of distinct comparable prime ideals P < Q in specR, the factor
Q/P contains a nonzero normal element of R/P. In the stronger setting where each
factor Q/P contains a nonzero central element of R/P we say that spec R has central
separation. Although we are not going to pursue questions about cliques, localization,
and representation theory here, it is worth reminding the reader that normal separation
is important for such questions in that it gnarantees the strong second layer condition
(cf. [14, Proposition 8.1.7; 10, Lemma 11.14]).
We shall say that Tauvel's height formula holds in the algebra R provided

height(P) + GKdim(R/P) = GKdim(R)

for all P € specR. In case R is in addition catenary, it follows that the height formula
also holds in prime factor rings of R, since then

height(Q/P) = height(Q) — height(P) = GKdim(R/P) — GKdim(R/Q)

for all primes P < Q in R.
Theorem 1.4 allows us to deduce catenarity from normal separation together with
the Auslander—Gorenstein and Cohen—Macaulay properties, as follows.

Theorem 1.6. Let R be an affine, noetherian, Auslander—Gorenstein, Cohen—Macaulay
algebra over a field, with finite Gelfand—Kirillov dimension. If spec R is normally sep-
arated, then R is catenary. If, in addition, R is a prime ring, then Tauvel's height
formula holds.

Proof. Suppose that P = Py < P, < -+ < P, = Q is a saturated chain of prime
ideals in spec R. Then by Theorem 1.4,

GKdim(R/P;—1) — GKdim(R/P;) = 1
for each i = 1,...,n. Summing up these equations, we find that
GKdim(R/P) — GKdim(R/Q) = n.

Therefore all saturated chains of prime ideals from P to Q have the same length,
namely GKdim(R/P) — GKdim(R/Q). Finally, in case R is a prime ring, we obtain
Tauvel’s height formula on taking P =0. O
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2. Quantum affine spaces

Our first application is to coordinate rings of quantum affine spaces, where the
Auslander-regular, Cohen—Macaulay, and normal separation properties are all rela-
tively easy to verify. We also verify normal separation for certain localizations of
these algebras, although that level of generality is not needed for our current applica-
tions.

2.1. Let A = (4;) be an n x n matrix of nonzero elements of a field £ such that
Ai =1 and 4;; = 4; ! for 1 <i,j < n. The multiparameter coordinate ring of quantum
affine n-space is the k-algebra (;(k") generated by elements xj,...,x, subject only to
the relations x;x; = Ayx;x; for 1 < i,j < n. Note that (0,(k") can be expressed as
an iterated skew polynomial ring starting with the field &; hence, (7;(k") is an affine
noetherian domain. As in [23], we write P(4) for the localization of @;(k") with respect
to the multiplicative set generated by the x;, that is, P(4) is the k-algebra generated by
! subject to the relations xix; = A;yx;x;. We use standard multi-index
notation for monomials in @;(k") and P(A): for any n-tuple m = (my,...,m,) € 2",

we set x™ = x["'x37 - X,

-1 _
X1,X] ey Xn Xy

2.2 An ideal I in a ring R is said to be polynormal (polycentral) provided I can be
generated by a sequence of elements cy,...,¢, such that ¢; is normal (central) in R and
c; is normal (central) modulo {c1,...,¢;—1) for i =2,...,t. A polynormal (polycentral)
ring is a ring in which all ideals are polynormal (polycentral).

Proposition. For [ = 0,...,n, let A; = k(xftl,...,xfcl,xm,...,x,,). Then A, is poly-
normal, while A, = P() is polycentral.

Proof. Note that 4; is noetherian. Hence, it suffices to show that for any ideals 7 > J
in 4,, there exists an element « € I \ J such that u +.J is normal in 4,//, and that
u +J can be chosen to be central in 4,/J in case [ = n.

Define the length of an element a € 4; to be the number of distinct monomials x™
appearing in a with nonzero coefficients. Choose an element u € I\ J of minimum
length, say length d. Then u = o;x™ + apx™ + ...+ ogx™ for some nonzero scalars oy
and some distinct n-tuples s; € Z! x (Z+)*!. Since we may replace u by o 'u, there
is no loss of generality in assuming that a; = 1. Further, in case / = n all the x; are
units in 4;, and so we can replace u by x,,_""xn__s'l‘"‘I ---x "u. Hence, in case / = n
we may assume that s; = (0,...,0).

Fix t € {1,...,n}. Bach x%x, = Bpxx* where Bp = [, A" € k*. Hence, ux, —
Brxiu = ap(Ba — Dxyx®™ + + -« + 0g(Bar — 1)x,x%. This is an element of / with length
less than d, and so it lies in J by minimality of d. Thus ux; = f.x,u(modJ) for all
t =1,...,n. Further, for t = 1,...,] we have ux,_1 = Balx,"lu(modJ), and so u+J
is normal in 4;/J. In the case / = n, where we can assume that all s; = 0, we have
Bi: = 1 for all ¢. Therefore u +J is central in 4,/J in case I =n. U
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2.3 (a) We can express P(4) as a quotient of a group algebra kG where G is the
subgroup of the group of units of P(4) generated by the x; and the ;. Since G is
finitely generated nilpotent, kG is polycentral by [27, Theorem A]. This provides an
alternate proof of the polycentrality of P(4).

(b) A more detailed analysis of the structure of P(4) shows that any pair of primes
P > Q in P(i) can be separated by an element which is actually central in P(4)
(rather than just central in P(4)/Q). However, we shall not need this fact.

(c) We give a generalization of Proposition 2.2 in the following section (see Propo-
sition 3.10).

Corollary 2.4. (a) spec P(4) has central separation.
(b) If A is the subalgebra of P(A) generated by some subset of xl,xl_l,...,x,,,x,,_ L
then spec A’ has normal separation. In particular, spec O;(k") has normal separation.

Proof. (a) This is immediate from Proposition 2.2.
(b) After re-indexing, we may assume that A’ is generated by

+1 +1

-1 -1
b SRR S S RIS 795 ST >

where 0 < r < s <t < n. Then 4’ is a subalgebra of P(u) where p is the upper left
t x t block of A, and so after replacing P(4) by P(u) we may assume that ¢ = n. Sec-
ondly, we may rewrite P(4) as P(p) with generators xif', ..., xF!, (x; )E, ..., D!
where

P {lij (i,jSSOI'i,j>S),
i = ~1 . . . .
d Ay (i<s<jori>s2>))

Therefore without loss of generality, s = n, and the result follows from Proposi-
tion 2.2. O

The following properties of the algebra @,(k") are probably well known, but we
have not located references in the literature.

Theorem 2.5. The coordinate ring O;(k*) of quantum affine n-space is Auslander-
regular and Cohen—Macaulay, with GK-dimension n.

Proof. Let V be the finite dimensional generating subspace for the algebra A = 0,;(k")
spanned by 1,x),...,x,. Since the monomials x™, for m € (Z*)", form a basis for 4,
we see that the dimension of each V¢ equals the number of n-tuples m = (my,...,my)
in (Z*)" with m; +---+m, < d. These dimensions are the same as for a commutative
polynomial ring in » variables, and thus GKdim(4) = n (cf. [16, Example 3.6} or [24,
Proposition 8.1.15]).

We can write 4 as an iterated Ore extension in the form

A = kxy; t]lx2; t2] -« - [X05 Tals
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where the 7; are k-algebra automorphisms of the intermediate algebras
Aimy = klx ullxs 2] [xier; s

such that 7;(x;) = A;x; for i > j. Further, if 4;_, is graded by total degree in
Xi,...,Xi_1, then 4;_; is connected and t; respects the grading. Iterated application of
[19, Lemma] completes the proof. [

Theorem 2.6. The coordinate ring O;(k") of quantum affine n-space is catenary, and
Tauvel’s height formula holds in @(k).

Proof. See Theorem 2.5, Corollary 2.4(b), and Theorem 1.6. [J

3. Quantized Weyl algebras

In this section, we turn to the class of quantized Weyl algebras that first appeared in
work of Maltsiniotis [22]. The Auslander-regular and Cohen—Macaulay properties are
again not hard to verify; in fact, this has already been done by Giaquinto and Zhang
[8] for a different class of quantized Weyl algebras that has a large intersection with
the class we are interested in, and their methods work in our case as well. It is the
verification of normal separation, which we obtain under the assumption that certain
parameters ¢; are not roots of unity, which absorbs most of our effort.

3.1. Let 4 = A,?’F(k) be a multiparameter quantized Weyl algebra over a field £ as
in [22] or [6, 12.5] (cf. [1, 5, 15]). Here O = (g1,...,4,) € (K*) and T = (yy) €
M,(k™) with y; = 1 and y; = y;; ! for all i,j. The algebra A is generated by elements
X1, V1s---»Xn, Yo Subject to the following relations:

yiyi=viyiyi (all i,)),

xix; = qiyyxixi (@ < j),

xiy;=viyxi (@ <Jj),

Xy =4qyiyixi (> )

xiy;=144q;yx;+ Z(‘II = Dy (all j).

I<j

It follows easily from these relations that 4 can be presented as an iterated skew
polynomial ring of the form

k[y1]x1; 72, 621[y2; T3)[x2; T4, 0] * - - [¥n3 T2n—1][Xn5 T2n, O2a),
where the t; are k-algebra automorphisms and the d,; are k-linear ty-derivations (cf.

(15, 2.1, 2.8]). In particular, 4 is thus seen to be an affine noetherian domain.

32. Let 4 = A2T(k) as in (3.1). Set z; = x;y; — ypx; = 1 + S_,(q1 — V)yix; for
j=1,...,n; note also that x;y; — q;y;x; = z;_ for j > 2. As shown in [15, 2.8], the
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z; are normal in 4. More precisely,
Zyi=qivz, zx=q; %z (<))
zyi=yizj, zixi=xz;  (I>])

22 = 2;2; (all i, /).

In particular, the normality of the z; allows us to localize with respect to any set of
them. More precisely, given any M C{1,...,n}, the multiplicative set Zs generated by
{zm | m € M} is an Ore set, and so there exists an Ore localization 4[Z ' . Moreover,
the corresponding multiplicative sets %'y and %y, generated by {x, | m € M} and
{ym | m € M}, respectively, are Ore sets, as observed in [15, 3.1].

We follow Jordan [15, 3.1] in denoting the localization A[Z {_11,"_’”}] by B,?’F(k)‘

We begin our analysis of quantized Weyl algebras by calculating the Gelfand—
Kirillov dimensions of the localizations 427 (k)[Z;,']. The GK-dimension of 42" (k)
in the case where all the ¢; coincide has been calculated by Giaquinto and Zhang [8,
Theorem 3.11]. The following lemma, analogous to [16, Proposition 4.2; 24, Proposi-
tion 8.2.13], will be helpful.

Lemma 3.3. Let A be an affine k-algebra with a regular normal element z. Suppose
that A has a finite dimensional generating subspace V containing 1 such that zV = Vz.
Then

GKdim 4[z7'] = GKdim 4.

Proof. Set W = V + kz~!. Then W is a finite dimensional generating subspace for
A[z™'] containing 1, and Wz = zW C V* for some ¢. Hence, W" C V™z~" for each n,
so that dim W" < dim V™. Thus GKdim 4[z~'] < GKdim 4. The opposite inequality
is obvious since 4 is a subalgebra of A[z7!]. O

Proposition 3.4. For any M C{1,...,n}, the algebra A,?’F(k)[ﬂ";{l] has GK-dimen-
sion 2n.

Proof. Set 4 = A2" (k). We first calculate the GK-dimension of 4 itself. Let ¥ be
the finite dimensional generating subspace of A4 spanned by 1, x;, y;, 1 <i < n. Using
the relations given in (3.1), it is easy to see that each ¥4 is spanned by monomials
y’i‘ yf;'xlj '...x# of total degree less than or equal to d. Also, these monomials are
linearly independent, since A4 is an iterated Ore extension in the variables y;, x; (3.1).
Hence, dim V¢ = (*%¢), the same as for the polynomial ring in 2n variables (cf. [24,
Lemma 8.1.3]). Thus GKdim 4 = 2n.

Now set z = [],c), zi (this product may be taken in any order, since the z; commute
with each other). Then A[Z ;{1] = A[z"!]. The relations given in (3.2) for the z;
show that if V' is the generating subspace for 4 given above, then zV = ¥Vz. That
GKdim A[Z A}l] = GKdimA4 = 2n now follows from the previous lemma. O
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Giaquinto and Zhang have proved the Auslander-regular and Cohen—Macaulay prop-
erties for a class of quantized Weyl algebras that includes those A,?’F(k) with Q =
(9,9,...,q) [8, Theorem 3.11]. We derive these properties for general A,?’r(k) in a
similar manner.

Lemma 3.5. Filter the algebra A :A,?’F(k) by total degree in the x; and y;, and let
C be the corresponding associated graded algebra. Let X;, Y; be the principal symbols
of x;, yi, respectively, and for each m = 0,...,n let C, be the algebra generated by
X, and Y; for i = 1,...,m. Then, C, is an iterated skew polynomial algebra of the
Jorm

Cn = Cu—1[Ym; TZm—l][Xm; T2m, 52m]-

Further, if C—1 and Cp—1[Ym; Tam—1] are graded by total degree, then ty,_1 and ton
are graded algebra automorphisms.

Proof. The relations between the X; and Y; are the same as those between the x; and
y; given in (3.1) except that the 1 is deleted from the last relation, i.e.,

XY, =qY,X + ) (g — DVX,

I<j

for all j. Using these relations, it is easy to see that the monomials
. . n
(+) Y XexD XN (o +j) =d
s=1

span the dth homogeneous component ¥%/V?~! of C. Now

dim Vd — dim Vd—l — (2n2-t’d> _ (Zn;—’t’i-—l)’
as in the proof of Proposition 3.4, and this is exactly the number of monomials of
the form (*); hence, these monomials must be linearly independent. Since C is the
direct sum of its homogeneous components, the monomials Y'X/, for i,j € (Z*)", are
linearly independent.

Now the relations between X; and Y; for i, j < m—1 do not involve Y, Ypy1,..., ¥y OF
X, Xms1s-- Xy, and so the monomials Yli‘ ---Y,;';"le‘ e X span Cp. Thus, Cp—1{¥n)
is an Ore extension of C,_1, and inspection of the relations shows that it has the form
Cm—1[Ym; Tam—1] Where 5, is a k-algebra automorphism respecting the grading on
Cp_1. Similarly, C,, is an Ore extension of the form Cp—1[Ym; Tam—11[Xm; T2m, O2m]
where 14, is a k-algebra automorphism respecting the grading on Cp—1[Ym; T2m—1] and
Oom i a k-linear 1,,-derivation. [

Theorem 3.6. The quantized Weyl algebra A2T (k) is an Auslander-regular Cohen—
Macaulay algebra.
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Proof. Let C = C, be the associated graded algebra of 4 = A,,Q’F(k), where 4 is filtered
by total degree. The previous lemma shows that C is an iterated skew polynomial
algebra of the form

k[Y110X1; 12, 0211 Y2; t31[X25 T4, 04] - - - [ Vs T2n—111X03 T2ns 020,

and that at each stage the subalgebras are graded by total degree and the automorphisms
respect the grading. Hence, C is Auslander-regular and CM by repeated applications of
[19, Lemma]. It now follows that A is Auslander—Gorenstein and CM, by [29, Lemma
4.4]. In fact, 4 is Auslander-regular, since gldim4 < 2n < oo, by [24, Theorem
753]. O

In order to apply Theorem 1.6 to quantized Weyl algebras, we need to prove normal
separation. OQur method involves localizations in which we invert certain of the z;, and
it would be most convenient if we could reorder the z; so that the ones to be inverted
all occur at the beginning of the list. However, we can only partially achieve this aim
— we are unable to bring a z; that we wish to invert to the front of the list unless z;_;
is also to be inverted. Thus, we can move to the front all such z;, resulting in a new
ordering in which all the z; from an initial string are to be inverted, while those z; later
in the list which are to be inverted are flanked on each side by z;’s which we do not
invert. It is these “isolated” z; which we are unable to move forward. The following
lemma gives the technical details of this procedure.

Lemma 3.7. Given any subset M C{1,...,n}, there exist a permutation 1 € S, with
corresponding permutation matrix 11 and a k-algebra isomorphism

G APV 2] | — 42T (o)

such that
(@) i~ M) ={1,2,...,mo} U {my,...,m;} where m; > ms_; +2 for s=1,...,¢
(b) Each ¢(3:) = yn(i) and ¢(X;) = uixsy, where the u; € Z Xy and 31,91, .. %,
Yn are the canonical generators of A,,QH‘H_IFH(k).
Proof. It suffices to show that if there is some r € {3,...,n} such that ,r —1 € M
while » — 2 ¢ M, then there exists a k-algebra isomorphism ¢ as above, where n =
(r,r —1,...,1). Let II be the permutation matrix with entries m;; = d;(;), and set

(’q\l"--’/q\n) = QH == ((Ir,(Il,--',(Ir—l,Qr+1,-~-,‘In),

and (5;;) = TI™'TIT = (yagiyag))- Write B and B for the algebras 49" T (k)2 -, o]
and AnQ’F(k)[fZ’ W' ], and label the canonical generators for Bas %, Vi, 2! where 7; =
%9 — 9% and z, ' € B for i € n7 (M),

We begin by identifying elements %, ¥, € B satisfying the same relations as the
Xi, ¥i. First, set J; = yn( for all i, and note that

ViFj = Ve yuiy = Ve e Yy = V53,5
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for all #,j. Next, set z; = zr"_llz, and

—1 .
z_ % (i=1),
.f,': ilx,-_l (i=2,...,r),

X (i=r+1,...,n).

Since z,—; commutes with x, and y,, we have

~ o~ ~ o~ —1 -
Ly — i =z, yr = @ryrx) = Z,_11Zr—1 =1
~ ~ ~ - -1 1
XV = X =z, (% yr — VX)) = 2, 12, = 235
in particular, the notation 2 is justified. Observe that ; commutes with x; and y; for

all i # r, while Z1x, = ¢;"'x,Z, and 21y, = q,,%1.
For i =2,...,r, we now have

i—2
P — @i¥% =Z1(xic1Yic1 — i1 yim1Xio) = 2) (1 + Z(‘Ij - l)y,-x,)
=1
i—1 i—1

=7+ @ - D=1+ G- Dys

=2 =1
If Z; := X;y, — ¥ X, then, similarly, Z; = Z;(x;~1¥i—1 — ¥i—1Xi—1) = Z1z—. In particular,
Z, = 012m1 =2, llz,z, 1 =2z. Hence, for i =r+1,...,n we have

i—1 i—1
¥ —@iF=xyi— gy =1+ Y (@ - Dym=z+ »_ (@ - Dy
I=1 I=r+1
i—1 i—1

=%+ > @-DjF=1+ Z(qz — DF,

I=r+1
while Z; := x;J;, — X = x;¥; — yix; = z;. Note that for all i, the element Z; equals a
unit of B times zy). Thus, 7' € B for all i € n~'(M).
The next step is to check the relations involving X;%; and X;j;, which is easy but for
the number of cases involved. We shall write out the details for the relations involving
%;X; and leave the others to the reader.

~1 -1 1.1 _—1-=

XX =z Ao = gz o1 = 4y v 2 -1 %

= iz = GyEE (<)<

= Gp Y jo1 21612, % = QYR ( J<r),
sx 1 _ -1 _ 1, _an s .
X\Xj =2, \XX) = @ VriZ, XX = GrrXiZ, X = yyxx% (r < ),
X =216121%-1 = gi—1Vim1, 121 fixoy = qygxk; (1 <i< j<r),
-fi-fj =Z~1x1—-1xj = qi—-1Vi— l,j'szlxl—l = qu1jx]xt (1 <ilr<)),

XiX; = xi%; = qiyyX%i = qiviX%i  (r < i < j).
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Thus .fi.fj = ;]\ir);ijijfi for all i < _] Slmllarly,

%5, = {?ﬁf’jfi @<j)
lj gy > )

Therefore there exists a k-algebra homomorphism ¢ : B — B such that ¢(x;) = x; and
d(y;) =y, for all i.

Obviously yi = y,-i;) € ¢(§) for all i, and x; = X; € d)(lA?) for all i > r. Further,
z; = Z; € ¢(§) for i > r, and since 31_1 €B (because 1 € n~!(M)) we have
z; :lez}H € ¢(§) for i < r. Consequently, x; =5]_1fi+1 € d)(lA?) fori=1,...,r—-1
and x, = z,_1X; € d)(lAi). For i e M N{l,...,r — 1}, we have zi_1 = 5;1151 € ¢(§)
because i + 1 € n~ (M), while for i € M N {r,...,n} we have z,-_1 = le € ¢(§)
because i € 7 '(M) (recall that = n~!(r — 1) € n~'(M)). Therefore ¢(B) = B.

Since B and B are noetherian domains with the same finite GK-dimension (Lemma
3.4), the kernel of ¢ must be zero (cf. [16, Proposition 3.15 or Corollary 3.16] or [24,
Corollary 8.3.6(ii)]). Therefore ¢ is an isomorphism. U

3.8. We next associate with each prime P in a quantized Wey! algebra 4 a localization
Bp = (A/Ip)[é”;l] where Ip is a polynormal ideal of 4 and &p is an Ore set of elements
normal modulo /p; Lemma 3.7 provides a key step in analyzing the structure of this
algebra. Under the assumption that none of the g; is a root of unity, we shall prove that
spec Bp is centrally separated, and then normal separation for spec A follows readily.

There are only finitely many of the pairs (/p,&p), and if we group the primes
associated with each pair (/,, &, ), we obtain a stratification of spec 4 analogous to the
stratification of spec €4(SL,(C)) into the disjoint sets spec,, U4(SL,(C)) for w € S, xS,
used in [11, 2.8; 12, Corollary 1.3] (cf. [3, Theorem 1.10]). We do not pursue the
analogy here, except to point out the parallel with the proof of normal separation of
spec O4(SL,(C)) given in [3, Proposition 1.7, Theorem 5.8].

3.9. Let 4 = Ag’r(k) and P € spec 4, and define the following index sets:

M={ie{l,...,n} | z; ¢ P},
M'={ie{l,....n} | yi ¢ P},
M'={ie{l,...,n} | x; ¢ P}.
Since x;y; — y;x; = z; for all j, we see that M C M’ NM". Further, x; and y; commute
modulo (z;), from which it follows (in view of the relations given in (3.1)) that x;
and y; are normal modulo (z;). Now set
Ip={(z|ig M)+ {y|ig M)+ (x| i ¢ M),

and note that /p is a polynormal ideal of 4 contained in P. Next, let & denote the Ore
set Xy Xy \mu¥unu in A. Note that the x; for i € M\ M and the y; for i € M'\ M
are normal modulo /p, whence the elements of &p are all normal modulo 7p. Since &p
is generated by normal elements not in P, it follows that the elements of &p are all
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regular modulo P. Finally, set
Bp = (4/Ip)[67 ']

and use a — 4 to denote the natural map 4 —»A/Ip £»Bp

It can be shown that Bp is isomorphic to an iterated skew-Laurent algebra of the type
described below (provided the g; # 1). However, for our present purposes it suffices
to exhibit Bp as a homomorphic image of such an algebra.

Proposition. If all gq; # 1, then Bp is a homomorphic image of an iterated skew-
Laurent algebra of the form

v o

BT () wih nlwd s 1) - [wiElsn,

where

(a) Q' is a permutation of a subvector of Q, and 1" is a permutation of the
corresponding submatrix of T.

(b) Each t; is a k-algebra automorphism such that TJ(BQ I (k)) = B,Q/’F/(k).

(c) tj(wr) € K*wy for I < j.

Proof. Observe that Bp can be obtained from A[Z ;{1] by factoring out ]p[i“’;{l] and
then localizing with respect to the image of &p. Hence, an isomorphic algebra results

if we annlv the chanoe of variahles for AT# =11 oiven in T emma 3 7. Thue thare ic no
11 V¥ al,,l,’l] il Ullulls\l Vi vaiilauivd 1ul IILwM J Elv\lll 111 A wLLLLRIQY e 4110, tliwiw 10 1Y

loss of generality in assuming that M = {1,2,...,r}U{my,...,m;} where m; > r+2
and m; > m,_ + 2 for s = 2,...,t. In other words, j — 1 and j cannot both belong to
Mforj=r+1,...,n

Set B, = B,Ql’rl(k) where Q' = (q1,...,q-) and T is the upper left » x r block
of I'. Then B, is a subalgebra of A[Z ;41], and we have a k-algebra homomorphism
¢, : B, — Bp such that ¢.(x;) = % and ¢.(y;) = §, for i = 1,...,r. Note that
0. L2  all lie in ¢(B,).

We next observe that for j = r+ 1,...,n, there is a scalar ; € k* such that
Xy, =0y % If j ¢ M, then x;3, — % =2; =0, and we take «; = 1. On the other
hand, if j € M, then j > r+2 and j — 1 ¢ M. In this case, X;3; —q;y,X; =Z;—1 =0,
and we take a; = g;.

Now construct the following iterated skew polynomial ring:

B = B, [ur11; pr+1]lvr+1; 0r41] - - [tn; pn][0n; Oals
where the p; and o; are k-algebra automorphisms satisfying the rules below.
pi(yiy=viyi oi(yi)=gqivyyi (A <i<r),
o) =yui,  oj(w;) = qiyiju; (r<i<j)
pix) =vyxi, o) =q; yim  (1<i<r),
pi(v)=yyvi,  0;(v:) = g; 'yuvi (r<i<),

O'j(llj) = ajuj.
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That automorphisms of this form exist follows from the fact that B, has commut-
ing automorphisms p?, ,,67,,,...,p;,05 satisfying the given rules; namely, p7 equals
conjugation by y; and ¢; equals conjugation by x;.

We claim that ¢, extends to a k-algebra homomorphism ¢ : B — Bp sending
uj to y; and v; to X; for j =r+1,....m this requires checking that the 7; and
%; satisfy the same relations as the u; and v;. For instance, for i < r < j we
have 3,3, = vy, y; = rpi(yi)P; and ¥ X = y%¥; = orpi(xi)F)s from which we
see that 7,¢.(b) = ¢,py(b)y; for all b € B,. Similarly, %;¢,(b) = ¢,0;(b)%; for
all » € B,. Since the relations among ¥,,,,%.41,..., ¥,,%» include those assigned to
Up41>Ursls---»Un, Up (by construction), we conclude that there does exist a k-algebra
homomorphism ¢ as described.

Finally, set

J=wlie{r+1,... .0} \M)+{vlie{r+1,....n}\M"),
B=@BNu'lieMn{r+1,. . ., n}lv;' jieM n{r+1,...,n}];

then B’ can be presented as an iterated skew-Laurent extension of B, satisfying prop-
erties (b) and (c). By construction, 3, = 0 for i ¢ M’ and x; = 0 for i ¢ M", whence
J Cker ¢. We claim that j, is invertible in Bp for i € M’ N {r +1,...,n} and that %;
is invertible in Bp for ie M" N{r+1,...,n}.

Consider i e M' N {r+1,...,n}. If i ¢ M, then y; € &p and J, is invertible in Bp
by construction. If i € M, then i > 7+ 2 and i — 1 ¢ M. In this case,

Zi =21+ (qi — l)y,-x,- =(g;— Dyixi (Il’lOde),

whence $%; = (¢: — 1)7'Z;. But Z; is invertible in Bp because i € M, and thus j, is
too. A similar argument shows that %; is invertible in Bp for i e M" N {r +1,...,n},
as claimed.

Therefore ¢ induces a k-algebra homomorphism ¢’ : B’ — Bp, and we complete
the proof by showing that ¢’ is sutjective. Now y,%; € ¢(B) C ¢'(B') for all j, and
z"j'1 € ¢(B,)C ' (B') for all j < r. We must also show that the inverses of the
remaining generators of &p are contained in the image of ¢’. For i € M'\ M, we
have i > r and so ;' = ¢'(u;'). Similarly, ;' = ¢'(v]’!) for i € M” \ M. Finally,
consider j € M N {r+1,...,n}, and recall that j € M’ N M”. By construction, #; and
v; are invertible in B’, whence )71._1,32]._1 € ¢'(B'). Since Z; = (g; — 1) %; in this case
(recall that j —~ 1 ¢ M), we conclude that z~j_1 € ¢'(B’), as desired.

Therefore ¢’ is surjective. [

Our final step in proving normal separation for quantized Weyl algebras is to show
that the iterated skew-Laurent algebras appearing in Proposition 3.9 are polycentral.
We do this under the hypothesis that none of the g; is a root of unity. In that case, a
result of Jordan [15, Theorem 3.2] shows that the algebras Bgl’rl(k) are simple, and
the following extension of Proposition 2.2 yields the desired polycentrality.
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Proposition 3.10. Let A = B[xit';7)][xf!; 73] - - [xE'; 1,] be an iterated skew-Laurent
extension where B is a simple noetherian k-algebra, each t; is a k-algebra automor-
phism such that v(B) = B, and t(x;) € k*x; for j < i. Then A is polycentral.

Proof. As in the proof of Proposition 2.2, we just need to show that for any ideals
I > J in A, there exists an element « € I \ J which is central modulo J.

Choose an element ¥ € I\ J of minimum length, say length d. Then u = b;x* +
byx® 4 -+ byx™ for some nonzero elements b, € B and some distinct n-tuples s, € Z".
After replacing u by u(x*')~!, we may assume that s; = (0,...,0).

Since B is simple, there exist elements e;, f; € B such that Zj ejbif; = 1. Set
u' =3 euf; € I, and observe that «' = 1+ byx® + ... + bjx* for some b, € B.
Consequently,

u— by = (by — by + ... + (bg — b1b))x%

is an element of / with length less than d, whence u— b1’ € J. Since u ¢ J, it follows
that &’ ¢ J, and so we may replace u by #'. Thus, there is no loss of generality in
assuming that b; = 1, that is, u = 1 + box™ + ... + byx™.

Fix t € {l,...,n}. For h = 2,...,d, note that (b;x™)x, and x,(bpx™) both liec in
Bx*+te where e, = (0,...,0,1,0,...,0) with 1 in the fth position. Hence, ux, — x,u has
length less than d, and so ux, — x,u € J. Similarly, for » € B we observe that ub — bu
has length less than d, whence ub — bu € J. Therefore u +.J is central in 4/J, as
desired. O

3.11. Proposition 3.10 can be improved, if desired. First, it is not necessary to assume
that B is simple, only that B is T-simple where T is the subgroup of AutB generated
by the restrictions of the 7;. Second, one can prove a version analogous to the first
part of Proposition 2.2. Namely, if

+1 +1
A =Blx; 51l - s ulx Tl [Xas Tl

and if B is T)-simple where T is generated by the restrictions of ty,...,7; to B, then
A; is polynormal. We leave the details of these extensions to the reader.

Theorem 3.12. Let A = A,,Q’F(k) as in (3.1). If none of the g; is a root of unity, then
spec A has normal separation.

Proof. Consider distinct comparable prime ideals P < P’ in spec 4, and define Ip and
&p as in (3.9). Since the elements of &p are regular and normal modulo P, if P'N&p
is nonempty we immediately obtain a nonzero normal element in P'/P. Hence, we may
assume that P’ N &p = (), and so we obtain distinct comparable primes PBp < P'Bp
in the localization Bp.

Now Bp is a homomorphic image of an iterated skew-Laurent algebra of the form

B2 ()[wil; 1 lwE s ra] - - [wiEh ]



138 KR Goodearl, T.H. Lenagan!/Journal of Pure and Applied Algebra 111 (1996) 123-142

as in Proposition 3.9. Since none of the g; is a root of unity, B?"F’(k) is simple [15,
Theorem 3.2]. Therefore it foliows from Proposition 3.10 that Bp is polycentral. In
particular, there exists a nonzero central element ¢ € Bp/PBp which lies in P'Bp/PBp.
Then ¢ = c’e”! for some ¢/ € P’ \ P and some e € &p, and since e is regular and
normal modulo P, we conclude that ¢’ is normal modulo P. Thus we have normal
separation in all cases. [

Theorem 3.13. Let Q = (q1,...,¢,) € (). If none of the g; is a root of unity, then
the quantized Weyl algebra Ag’r(k) is catenary, and Tauvel’s height formula holds
in A2 (k).

Proof. All the hypotheses of Theorem 1.6 are satisfied by Ag’r(k), in view of Propo-
sition 3.4 and Theorems 3.6, 3.12. [

4. Other quantum algebras

This short final section is devoted to two important algebras for which an extensive
structure theory is already known — the quantum general linear group and the quantized
enveloping algebra of a maximal nilpotent subalgebra of a semisimple Lie algebra. We
begin by discussing the coordinate ring of the quantum general linear group. While it
is not hard to obtain the Auslander-regular and Cohen—Macaulay properties for general
multiparameter versions of this algebra, at present normal separation is only known
in the one-parameter case over the complex field. We ignore the case in which the
parameter g is a root of unity, since then the quantum general linear group satisfies
a polynomial identity, and both normal separation and catenarity follow from standard
PI theory. Normal separation in the case that g is not a root of unity was derived by
Brown and the first author [3] from Hodges and Levasseur’s fundamental work on the
quantum special linear group [11, 12].

4.1. We define the one-parameter coordinate ring of quantum matrices over a field k

= I

as in [28, p. 145]; here the parameter ¢ is any nonzero element of k. This is the &-
algebra O,(M,(k)) generated by elements x;; for i,j = 1,...,n subject to the following
relations:

xipx; = qxpxy (i< 1),

XijXim = @ ximxy; (j < m),

XimX1j = X[jXim (i < [ and j< m),

XijXim — Xim¥ij =(§° — q )ximx;; (i < I and j < m).
It is well known that @(M,(k)) is an iterated skew polynomial extension of & (cf. [9,

3.1]) and hence a noetherian domain, and that this algebra has GK-dimension n? [25,
Theorem 3.5.1].
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Recall that the coordinate ring of the quantum general linear group, 04(GL,(k)), is
formed from @,(M,(k)) by inverting the “quantum determinant”

det, X = Z(—q”2 )I(")Xl,a(x Y2,6(2) * * * Xna(n)»
o€ES,

which is a central element in O,(M,(k)). In particular, O,(GL,(k)) is a noetherian
domain, with GK-dimension n? (use [16, Proposition 4.2] or [24, Proposition 8.2.13]).
The coordinate ring of the quantum special linear group, 0g(SL,(k)), is the factor ring
Og(My(k))/(det, X — 1). The homological properties we require of 0y(GL,(k)) can
be obtained from those determined for 0,(SL.(k)) by Levasseur and Stafford [19], as
follows.

Theorem 4.2. The coordinate ring Oi(GL,(k)) of the quantum general linear group
is Auslander-regular and Cohen—Macaulay.

Proof. First, 0,(SL,(k)) is Auslander-regular and CM by [19, Corollary]. By [19,
Lemma}, these properties carry over to the polynomial ring Oy(SL.(k))[z,z'] (where z
and z’ are central indeterminates). Then, since zz’ — 1 is a central regular element of
O4(SLy(k))[z,2'], [19, Lemma] shows that the factor ring Og(SL,(k))[z,2']/(zz' — 1) is
Auslander—Gorenstein and CM. The latter algebra is isomorphic to the Laurent poly-
nomial ring (Qq(SL,,(k))[z,z_l], and hence to Oy (GL,(k)) [19, Proposition]. Therefore
0a(GL,(k)) is Auslander-Gorenstein and CM. On the other hand,

gldim 0,(GL,(k)) < gldim O,(M,(k)) < n* < o0,

because of the structure of 0,(M,(k)) as an iterated skew polynomial extension of k
[24, Theorem 7.5.3]. Thus Oy(GL,(k)) is actually Auslander-regular. [J

Theorem 4.3. If ¢ € C* is not a root of unity, then spec Og(GL,(C)) has normal
separation.

Proof. [3, 6.14]. O

4.4. Brown and the first author have conjectured that not only spec Oo(GL.(k)) but
also spec Og(M,(k)) has normal separation, at least for aigebraically closed fields k.
(In particular, this can be easily checked in the case n = 2.) Since Oy(M,(k)) is
Auslander-regular and Cohen—Macaulay [19, proof of Corollary], it would then follow
that @,(M,(k)) is catenary.

Theorem 4.5. If g € C* is not a root of unity, then Oy (GL,(C)) is catenary, and
Tauvel’s height formula holds in 04(GL,(C)).

Proof. See Theorems 4.2, 4.3, and 1.6. O
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Theorem 4.5 of course holds also for 04(SL,(C)), which is a factor of @,(GL,(C))
by a height 1 prime ideal.

Normal separation is known for the quantum coordinate rings (/z(G) of connected
semisimple algebraic groups over C (see [3, Theorem 5.8]). We conjecture that these
algebras are also Auslander-regular and Cohen—Macaulay, hence catenary.

4.6. Malliavin has recently proved that the quantized enveloping algebra of a maximal
nilpotent subalgebra of the simple Lie algebra of type B, over an algebraically closed
field of characteristic zero is catenary [21, Théoréme 2]. In fact, this conclusion holds
for the quantized enveloping algebra U,(n*) of a maximal nilpotent subalgebra n of an
arbitrary finite dimensional semisimple complex Lie algebra g. The normal elements
needed to apply our method exist by work of Caldero [4], and the requisite homological
properties follow from results of Ringel [26]. Generators and relations for the quantized
enveloping algebra of g as defined by Lusztig can be found in [20]; we do not recall
them here, but only those required for the subalgebra corresponding to U (n™).

Let (a;;) be the Cartan matrix of g; this is an # X » integer matrix (where n is the
rank of g), and there exist relatively prime positive integers d; such that the matrix
(d;a;;) is symmetric. Let (Q(g) be a rational function field over @ in an indeterminate
g, set v = g°, and define U™ to be the Q(v)-algebra with generators E,...,E, subject
to the relations

l—ay;

Z(_l)s <l—sa,~j> Eil—ai]_sEjEf -0
s=0 d

i

for all i # j, where (l_s”"f )d is a v¥-binomial coefficient. These coefficients are defined

i

as follows:

dt dt

vt — v

(5)a [l -, where [r]; = H

T Islilr - sl vt

The quantized enveloping algebra Uy(n™), finally, may be defined as U* ®g) C(q).
(The algebra Uy,(n™) is denoted U™ in [4, Section 1.2]. In [26], on the other hand, the
symbol U™ denotes the algebra we have labelled U*.)

Theorem 4.7. The quantized enveloping algebra Uy (n") is an affine noetherian C(q)-
algebra with finite GK-dimension. Moreover, U,(n") is an Auslander-regular, Cohen—
Macaulay domain.

Proof. By definition, U,(n*) is an affine C(q)-algebra.
Ringel has shown in [26, Sections 4,5] that the algebra U™ is an iterated skew
polynomial ring of the form

U™ = Qu)[X11[X2; 72,821 - - [Xom; T O]



K. R Goodearl, T.H. Lenagan/Journal of Pure and Applied Algebra 111 (1996) 123-142 141

where the 7; are Q(v)-algebra automorphisms such that 7,(X;) € vlX; for i < j, and
the &; are Q(v)-linear t;-derivations such that ;(X;) (for i < j)is a linear combination
of monomials in X;41,...,X;_;. Further, U" has a natural Z"-grading under which the
X; are homogeneous elements. For / € Z, let U be the sum of the homogeneous
components of U™ over those n-tuples (/y,...,1,) € Z" for which /{+...+1, = [. The
decomposition U* = @, U} is a Z-grading of U™ in which the X; are homogeneous
of positive degree. Each iteration Q(v)(Xj,...,X;—;) is then a connected graded Q(v)-
algebra, and the automorphism 7; respects the grading on Q(v){(Xj,...,X;—1).

All the Q(v)-algebra structure just described for Ut carries over to corresponding
C(q)-algebra structure for Uy,(n"). Hence, U,(n*) is a noetherian domain, and iterated
application of [19, Lemma] shows that U,(n") is Auslander-regular and CM.

It remains to show that GKdim(U,(n*)) is finite. This follows from iterated appli-
cation of a slight enhancement of [16, Proposition 3.5]. Namely, suppose that 4 is an
affine algebra over a field k¥ and B = 4[x;7,d] is a skew polynomial ring constructed
from a k-algebra automorphism 7 and a k-linear t-derivation d. If 4 has a finite di-
mensional generating subspace which is t-stable, then GKdim(B) = GKdim(4) + 1.
We leave the verification of this equality to the reader. [J

Theorem 4.8. The quantized enveloping algebra Uy(n™) is catenary, and Tauvel's
height formula holds in Uy(n*).

Proof. Caldero has shown that every ideal of Uy(n") has a normalizing sequence of
generators [4, Corollaire 3.2]. Normal separation in spec Uy(n™) follows immediately,
and then Theorems 4.7 and 1.6 yield the desired conclusions. [

Notes added in proof (January 1996).

(a) Further studies of prime ideals in quantized Weyl algebras may be found in
papers of Akhavizadegan and Jordan [31] and Rigal [33].

(b) Theorem 1.6 has been applied by Oh to obtain catenarity in the quantum co-
ordinate rings of symplectic and Euclidean spaces [32].

(c) For graded algebras, several of the hypotheses of Theorem 1.6 are redundant,
due to a recent result of Zhang [34]: In a connected graded noetherian algebra of finite
injective dimension, normal separation implies the Auslander—Gorenstein and Cohen—
Macaulay properties, as well as finiteness of the Gelfand—Kirillov dimension.
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