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Abstract 

Various quantum algebras are shown to be catenary, i.e., all saturated chains of prime ideals 
between any two fixed primes have the same length. Further, Tauvel’s formula relating the 
height of a prime ideal to the Celfand-Kirillov dimension of the corresponding factor ring is 
established. These results are obtained for coordinate rings of quantum affine spaces, for quantized 
Weyl algebras, and for coordinate rings of complex quantum general linear groups, as well as 
for quantized enveloping algebras of maximal nilpotent subalgebras of semisimple complex Lie 
algebras. 

1991 Math. Subj. Class.: 16D30, 16E99, 16P40, 16P90, 17B37 

0. Introduction 

Our aim in this paper is to investigate the prime ideal structure of various algebras 

arising in the theory of quantum groups under the general heading “quantum coordinate 

rings”. These algebras are expected to exhibit a structure similar to that of enveloping 

algebras of solvable Lie algebras, and our results support this philosophy. (See [3, 5, 

93 for additional evidence.) Here, we concentrate on the property of catenarity. Recall 

that a ring R is catenary if, for any two prime ideals P -c Q of R, all saturated chains 

of prime ideals between P and Q have the same length. It is a famous result of Gabber 

that enveloping algebras of finite dimensional solvable Lie algebras are catenary (see, 

e.g., [7] or a combination of [18, Appendix Al] and [16, Ch. 91); the second author has 
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extended this result to enveloping algebras of finite dimensional solvable Lie superal- 

gebras [ 171. The method of proof in both cases is the same: establish good homological 

properties of the ring, then connect homological properties with growth, and, finally, 

control the growth properties of prime factors by finding normal elements. This method 

yields in addition the following useful height formula established by Tauvel [30] for 

enveloping algebras of solvable Lie algebras: height(P) + GKdim(R/P) = GKdim(R) 

for all prime ideals P in R. 

In Section 1, we start by writing down the abstract properties sufficient to prove 

catenarity results in this way, and in succeeding sections we show that various quan- 

tum algebras have these properties. In particular, we obtain catenarity and the height 

formula for coordinate rings of quantum affine spaces, for quantized Weyl algebras, 

and for coordinate rings of complex quantum general linear groups, as well as for 

quantized enveloping algebras of maximal nilpotent subalgebras of semisimple com- 

plex Lie algebras. (In the second and third cases, certain parameters are restricted to 

be nonroots of unity.) 

1. Catenarity: Gabber’s method abstracted 

1.1. Throughout this section, let k be a field and R an affine (finitely generated) noethe- 

rian k-algebra. We show how existing technology can be combined to provide an 

axiomatic basis for Gabber’s catenarity theorem. The homological aspects of this ar- 

gument are contained in work of Bjork, who has shown that a version of Gabber’s 

maximality principle follows from the Auslander-Gorenstein condition [2]. The remain- 

der of the proof runs parallel with the treatment of Gabber’s theorem in [16], given 

the assumption of a suitable supply of normal elements. 

The algebra R is said to be Auslander-Gorenstein provided (a) the injective di- 

mension of R (as both a right and a left R-module) is finite, and (b) for any integers 

0 5 i < j and any finitely generated (right or let?) R-module M, we have Extk(N, R) = 
0 for all R-submodules N of Exti(M,R). If, in addition, the global dimension of R 
is finite, then R is said to be Auslander-regular. The grade of a finitely generated 

R-module M is defined to be 

j(M) := inf{j 2 0 ( Exti(M,R) # 0). 

We shall denote the Gelfand-Kirillov dimension of an R-module M by GKdim(M) 

(see [16 or 24, Ch. 81 for basic properties of this dimension). The algebra R is called 

Cohen-Macaulay (or CM) if j(M)+GKdim(M) = GKdim(R) for all finitely generated 

R-modules M. 
A nonzero R-module M is pure (with respect to grade) if j(N) = j(M) for all 

nonzero submodules N of M. The corresponding property with grade replaced by GK- 

dimension is called GK-homogeneity. More precisely, M is called s-homogeneous if 

M and all its nonzero submodules have GK-dimension S. 
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Theorem 1.2 (Gabber’s maximality principle). Let R be A&under-Gorenstein and M 
a finitely generated R-module. Suppose that M is pure, and that k is an R-module 

containing M such that every jinitely generated submodule of k is pure. Then there 

is a unique maximal member in the set 

(jinitely generated R-modules X ( M &X &k and j(X/M ) Zj(W+2). 

Proof. See [2, Theorem 1.141. 0 

Corollary 1.3. Let R be A&under-Gorenstein and Cohen-Macaulay, and M a$nitely 
generated R-module. Suppose that GKdim(R) < 00, that M is GK-homogeneous, and 
that fi is an R-module containing M such that every jkitely generated submodule of 
I@ is GK-homogeneous. Then there is a unique maximal member in the set 

(finitely generated R-modules Y ( M & Y c k? and 

GKdim( Y/M) < GKdim(M) - 2). 

Proof. Translate the theorem from the setting of grade to that of GK-dimension using 

the CM hypothesis: GKdim(N) = GKdim(R)-j(N) for all finitely generated R-modules 

N. 0 

If P < Q are prime ideals of the noetherian k-algebra R with height(Q/P) = 1, 

then GKdim(R/P) 2 GKdim(R/Q) + 1 [16, Corollary 3.161. This inequality can be 

strict, and the next theorem, the key to catenarity, gives conditions sufficient to ensure 

equality. 

Theorem 1.4. Let R be Auslander-Gorenstein and Cohen-Macaulay with GKdim(R) 

jinite, and let P < Q be prime ideals of R with height(Q/P) = 1. If there exists an 
element x E Q \ P that is normal module P, then GKdim(R/P) = GKdim(R/Q) + 1. 

Proof. Set A = R/P and s = GKdim(A) < 00. Set b = x + P E A, and note that 

bA = Ab by hypothesis. Let A[b-‘1 be the localization of A with respect to the Ore 

set {b” ( n = 0, 1,2,. . .}. Now consider A and A[b-‘1 as right R-modules. Note that A 

is s-homogeneous by [16, Lemma 5.121, and that A[b-‘1 is the union of submodules 

b-“A = Ab-“, all of which are isomorphic to A (as one-sided modules). Hence, every 

finitely generated submodule of A[b-‘1 is s-homogeneous. Let Y be the unique maximal 

finitely generated extension of A in A[b-‘1 with GKdim(Y/A) 5 s - 2 provided by 

Corollary 1.3. Since Y is finitely generated, there is an integer n such that Y C bb”A. 
Now conjugation by b acts as an automorphism on both A and A[b-‘1, and it follows 

from the maximality of Y that b-‘Yb = Y; thus bY = Yb. 
Let I = r.annA(Y/bY), and note that I # 0 (because b E I). Then YZ C bY and so 

YZ’ & b’Y for each positive integer t. In particular, 

I *+’ = AI”+’ C Y-I”+’ C b”+‘Y L b”+‘b-“A = bK Q/P, - 

and consequently I C: QjP. Thus Q/P is a prime ideal of A minimal over I. 
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Now GKdim( Y/by) < GKdim(A/Z) < GKdim(A) - 1 = s - 1, by [16, Proposition 

3.151. On the other hand, YjbY Z b-’ Y/Y. Hence, by the maximal@ of Y, it follows 

that the module Y/by is (s - 1 )-homogeneous. Now Lemmas 2 and 3 of [17] applied 

to Y/by show that 

GKdim(R/Q) = GKdim(A/(Q/P)) = s - 1 = GKdim(R/P) - 1. 0 

1.5. We say that the prime spectrum of the ring R has normal separation provided 

that for any pair of distinct comparable prime ideals P < Q in specR, the factor 

QJP contains a nonzero normal element of R/P. In the stronger setting where each 

factor Q/P contains a nonzero central element of R/P we say that spec R has central 

separation. Although we are not going to pursue questions about cliques, localization, 

and representation theory here, it is worth reminding the reader that normal separation 

is important for such questions in that it guarantees the strong second layer condition 

(cf. [14, Proposition 8.1.7; 10, Lemma 11.141). 

We shall say that Tauvel’s height formula holds in the algebra R provided 

height(P) + GKdim(R/P) = GKdim(R) 

for all P E spec R. In case R is in addition catenary, it follows that the height formula 

also holds in prime factor rings of R, since then 

height(Q/P) = height(Q) - height(P) = GKdim(R/P) - GKdim(R/Q) 

for all primes P < Q in R. 
Theorem 1.4 allows us to deduce catenarity from normal separation together with 

the Auslander-Gorenstein and Cohen-Macaulay properties, as follows. 

Theorem 1.6. Let R be an afine, noetherian, Auslander-Gorenstein, Cohen-Macaulay 
algebra over a field, with finite Gelfand-Kirillov dimension. If spec R is normally sep- 
arated, then R is catenary. If; in addition, R is a prime ring, then Tauvel’s height 
formula holds. 

Proof. Suppose that P = PO < PI < .. ’ < P,, = Q is a saturated chain of prime 

ideals in spec R. Then by Theorem 1.4, 

GKdim(R/Pi_1) - GKdim(R/Pi) = 1 

for each i = l,... ,n. Summing up these equations, we find that 

GKdim(R/P) - GKdim(R/Q) = n. 

Therefore all saturated chains of prime ideals from P to Q have the same length, 

namely GKdim(R/P) - GKdim(R/Q). Finally, in case R is a prime ring, we obtain 

Tauvel’s height formula on taking P = 0. q 
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2. Quantum affine spaces 

Our first application is to coordinate rings of quantum affine spaces, where the 

Auslander-regular, Cohen-Macaulay, and normal separation properties are all rela- 

tively easy to verify. We also verify normal separation for certain localizations of 

these algebras, although that level of generality is not needed for our current applica- 

tions. 

2.1. Let L = (1,) be an n x n matrix of nonzero elements of a field k such that 

Aii = 1 and lzji = 2;’ for 1 < i, j 5 n. The multiparameter coordinate ring of quantum 

affine n-space is the k-algebra CJn(k”) generated by elements xi,. . .,x, subject only to 

the relations xixj = 1ijxjxi for 1 5 i, j 5 n. Note that Ol(k”) can be expressed as 

an iterated skew polynomial ring starting with the field k; hence, Ol(k”) is an affine 

noetherian domain. As in [23], we write P(1) for the localization of 0l(k”) with respect 

to the multiplicative set generated by the xi, that is, P(1) is the k-algebra generated by 
-1 

XI>Xi ,...,&,X, -’ subject to the relations xixj = Aijxjxi. We use standard multi-index 

notation for monomials in Ol(k”) and P(1): for any n-tuple m = (ml,. . . ,m,) E Z”, 

we set xm = xmlxm2 . . I 2 .xF. 

2.2 An ideal I in a ring R is said to be polynormal (polycentral) provided I can be 

generated by a sequence of elements cl,. . . , ct such that cl is normal (central) in R and 

ci is normal (central) modulo (cl,. . . , Ci_1) for i = 2,. . . , t. A polynormal (polycentral) 

ring is a ring in which all ideals are polynormal (polycentral). 

Proposition. For 1 = 0,. . . , n, let AI = k(xf’, . . . ,xF’,xl+i,. . .,x,). Then Al is poly- 

normal, while A,, = P(I) is polycentral. 

Proof. Note that Al is noetherian. Hence, it suffices to show that for any ideals I > J 

in Ai, there exists an element u E I \ J such that u + J is normal in Al/J, and that 

u + J can be chosen to be central in A,/J in case 1 = n. 

Define the length of an element a E Al to be the number of distinct monomials xm 

appearing in a with nonzero coefficients. Choose an element u E I \ J of minimum 

length, say length d. Then u = c~ia? + c12xs2 + . . . + ad.+ for some nonzero scalars ah 

and some distinct n-tuples sh E Z’ x (Z+)n-‘. Since we may replace u by a[‘~, there 

is no loss of generality in assuming that txi = 1. Further, in case 1 = n all the xi are 

units in Al, and so we can replace u by x;~I~x~~~-’ . . .xF”‘u. Hence, in case I = n 

we may assume that s1 = (0,. . . ,O). 

Fix t E {l,..., n}. Each yShxt = fih&xSh where /Ihl = ny=, 2:: E kX. Hence, u.xt - 

Pitxtu = IX#Q - l)xtxSz + . . + a&& - 1)x++. This is an element of 1 with length 

less than d, and so it lies in J by minimality of d. Thus uxl = /Iitx,u(modJ) for all 

t = l,..., n. Further, for t = l,...,Z we have WC,’ = &‘xt’u(modJ), and so u + J 

is normal in AI/J. In the case 1 = n, where we can assume that all sii = 0, we have 

/?ir = 1 for all t. Therefore u + J is central in A,/J in case I = n. 0 
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2.3 (a) We can express P(n) as a quotient of a group algebra kG where G is the 

subgroup of the group of units of P(1) generated by the xi and the ;1,. Since G is 

finitely generated nilpotent, kG is polycentral by [27, Theorem A]. This provides an 

alternate proof of the polycentrality of P(J). 
(b) A more detailed analysis of the structure of P(1) shows that any pair of primes 

P > Q in P(l) can be separated by an element which is actually central in P(1) 
(rather than just central in P(L)/Q). However, we shall not need this fact. 

(c) We give a generalization of Proposition 2.2 in the following section (see Propo- 

sition 3.10). 

Corollary 2.4. (a) spec P(A) has central separation. 
(b) If A’ is the subalgebra of P(L) generated by some subset of x1,x,‘, . . . ,x,,x;‘, 

then spec A’ has normal separation. In particular, spec O,(k”) has normal separation. 

Proof. (a) This is immediate from Proposition 2.2. 

(b) After re-indexing, we may assume that A’ is generated by 

fl fl -1 -1 
x1 ,...J, ,4+1,...,x,,x,+,,..., nt 

where 0 < r 5 s < t 5 n. Then A’ is a subalgebra of P(p) where p is the upper left 

t x t block of 12, and so after replacing P(A) by P(p) we may assume that t = n. Sec- 
ondly, we may rewrite P(1) as P(p) with generators xf’, . . . ,_I$‘, (x~;~,)*‘, . . . , (xi’)*’ 

where 

Pij = 

1 

lij (i,j 5 S or i, j > S), 

2;’ (i 5 s < j or i > s >j). 

Therefore without loss of generality, s = n, and the result follows from Proposi- 

tion 2.2. 0 

The following properties of the algebra 91(F) are probably well known, but we 

have not located references in the literature. 

Theorem 2.5. The coordinate ring LoA of quantum afJine n-space is Auslander- 
regular and Cohen-Macaulay, with GK-dimension n. 

Proof. Let V be the finite dimensional generating subspace for the algebra A = Oi(k”) 
spanned by 1,x1,. . . ,x,. Since the monomials xm, for m E (Z+)“, form a basis for A, 
we see that the dimension of each Vd equals the number of n-tuples m = (ml,. . . , m,) 
in (Z+)” with mt +... +m, 5 d. These dimensions are the same as for a commutative 

polynomial ring in n variables, and thus GKdim(A) = n (cf. [16, Example 3.61 or [24, 

Proposition 8.1.151). 

We can write A as an iterated Ore extension in the form 

A = kh; ~1lk2; 721. . . [xn; GA 
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where the zi are k-algebra automorphisms of the intermediate algebras 

such that ri(xj) = ibijxj for i > j. Further, if Ai- is graded by total degree in 

xi,. . . ,xi-l, then Ai_i is connected and ri respects the grading. Iterated application of 

[19, Lemma] completes the proof. 0 

Theorem 2.6. The coordinate ring LOA of quantum afine n-space is catenary, and 

Tauvel’s height formula holds in OA(k”). 

Proof. See Theorem 2.5, Corollary 2.4(b), and Theorem 1.6. 0 

3. Quantized Weyl algebras 

In this section, we turn to the class of quantized Weyl algebras that first appeared in 

work of Maltsiniotis [22]. The Auslander-regular and Cohen-Macaulay properties are 

again not hard to verify; in fact, this has already been done by Giaquinto and Zhang 

[8] for a different class of quantized Weyl algebras that has a large intersection with 

the class we are interested in, and their methods work in our case as well. It is the 

verification of normal separation, which we obtain under the assumption that certain 

parameters qi are not roots of unity, which absorbs most of our effort. 

3.1. Let A = AFr(k) be a multiparameter quantized Weyl algebra over a field k as 

in [22] or [6, 12.51 (cf. [l, 5, 151). Here Q = (qi,..., qn) E (kX)” and r = (yij) E 

Mn(kX ) with yii = 1 and yji = y,i’ for all i, j. The algebra A is generated by elements 

xi, yi, . . . ,x,, y,, subject to the following relations: 

YiYj = YijYjYi (all 63, 

XiXj = qiyijXjXi (i < j), 

%Yj = YjiYjXi (i < j), 

XiYj =qj?jiYjXi (i > j), 

XjYj = 1 + 4jYjXj + x(41 - l)YPl (all j). 
i<j 

It follows easily from these relations that A can be presented as an iterated skew 

polynomial ring of the form 

kbllh; 72, b21iY2; z31[X2; z4,641 . . . [Yn; 72n-11bz; Zzn, 82n1, 

where the ri are k-algebra automorphisms and the 82i are k-linear rzi-derivations (cf. 

[ 15, 2.1, 2.81). In particular, A is thus seen to be an affine noetherian domain. 

3.2. Let A = Agr(k) as in (3.1). Set zj = xjyj - yjxj = 1 + ci=i(q1 - l)ylx/ for 

j = l,..., n; note also that xjyj - qjyjxj = zj_1 for j > 2. AS shown in [15, 2.81, the 
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Zj are normal in A. More precisely, 

ZjYi = qi.YiZj, 
-1 

ZjXi = qi XiZj (i 5 A 

zjYi = .YiZj, ZjXi = XiZj (i > A 

ZjZi = ZiZj (all i, j). 

In particular, the normality of the zi allows us to localize with respect to any set of 

them. More precisely, given any M C{ 1,. . . , n}, the multiplicative set 3~ generated by 

{zm 1 m E M} is an Ore set, and so there exists an Ore localization A[%“,‘]. Moreover, 

the corresponding multiplicative sets %M and YM, generated by {xm 1 m E M} and 

{ ym 1 m E M}, respectively, are Ore sets, as observed in [ 15, 3.11. 

We follow Jordan [15, 3.11 in denoting the localization A[%yit___,.l] by BFr(k). 

We begin our analysis of quantized Weyl algebras by calculating the Gelfand- 

Kirillov dimensions of the localizations AFr (k)[%&‘]. The GK-dimension of AFr(k) 

in the case where all the qi coincide has been calculated by Giaquinto and Zhang [8, 

Theorem 3.1 I]. The following lemma, analogous to [16, Proposition 4.2; 24, Proposi- 

tion 8.2.131, will be helpful. 

Lemma 3.3. Let A be an afJine k-algebra with a regular normal element z. Suppose 
that A has aJinite dimensional generating subspace V containing 1 such that ZV = Vz. 

Then 

GKdim A[z-‘1 = GKdim A. 

Proof. Set W = V + kz-‘. Then W is a finite dimensional generating subspace for 

A[z-‘1 containing 1, and Wz = ZW C V’ for some t. Hence, W” & Vntz-” for each n, 

so that dim W” < dim V”‘. Thus GKdim A[z-‘1 5 GKdimA. The opposite inequality 

is obvious since A is a subalgebra of A[z-‘I. 0 

Proposition 3.4. For any M C{ 1,. . . , n}, the algebra Af’r(k)[%,l] has GK-dimen- 
sion 2n. 

Proof. Set A = AFr(k). We first calculate the GK-dimension of A itself. Let V be 

the finite dimensional generating subspace of A spanned by 1, Xi, yi, 1 2 i 5 n. Using 

the relations given in (3.1), it is easy to see that each Vd is spanned by monomials 
yf’ . . . YkX{’ . . .xk of total degree less than or equal to d. Also, these monomials are 

linearly independent, since A is an iterated Ore extension in the variables yi, xi (3.1). 

Hence, dim Vd = (2”&d), the same as for the polynomial ring in 2n variables (cf. [24, 

Lemma 8.1.31). Thus GKdimA = 2n. 
Now set z = niCM zi (this product may be taken in any order, since the zi commute 

with each other). Then A[ZG’] = A[z-‘1. The relations given in (3.2) for the zi 

show that if V is the generating subspace for A given above, then ZV = Vz. That 

GKdimA[z;‘] = GKdimA = 2n now follows from the previous lemma. 0 
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Giaquinto and Zhang have proved the Auslander-regular and Cohen-Macaulay prop- 

erties for a class of quantized Weyl algebras that includes those AFr(k) with Q = 

(4,4,..., q) [8, Theorem 3.111. We derive these properties for general AFr(k) in a 

similar manner. 

Lemma 3.5. Filter the algebra A = Agr(k) by total degree in the xi and yi, and let 

C be the corresponding associated graded algebra. Let Xi, K be the principal symbols 
of xi, yi, respectively, and for each m = 0,. . . , n let C, be the algebra generated by 
Xi and K for i = 1,. . . , m. Then, C,,, is an iterated skew polynomial algebra of the 

form 

cm = c,-l[~,;~2m-lI~Xm;~2m,~2ml. 

Further, if&.1 and C,,,_~[Y,;Q,,_-~] are graded by total degree, then ZZ,,,_I and ~2,,, 

are graded algebra automorphisms. 

Proof. The relations between the Xi and Yj are the same as those between the xi and 

Yj given in (3.1) except that the 1 is deleted from the last relation, i.e., 

XjYj = qjYjXj + C(q/ - l)Y/Xl 

l<j 

for all j. Using these relations, it is easy to see that the monomials 

span the dth homogeneous component Vd/Vd-’ of C. Now 

dim Vd - dim Vd-’ = (2nLd) - (2”lfnd-1), 

as in the proof of Proposition 3.4, and this is exactly the number of monomials of 

the form (*); hence, these monomials must be linearly independent. Since C is the 

direct sum of its homogeneous components, the monomials Y’Xj, for i, j E (Z+)“, are 
linearly independent. 

Now the relations between Xi and q for i, j < m- 1 do not involve Y,, Y,,,+r , . . . , Y,, or 

JzGJl+1, *. . > X,, and so the monomials Yi’l . . . YiX{’ . . . Xh span C,,,. Thus, C,,,_ I( Ym) 

is an Ore extension of C,,_r, and inspection of the relations shows that it has the form 

Cm-t [ Y,,,; r~,,_t] where r~,,,-r is a k-algebra automorphism respecting the grading on 

C,,_t. Similarly, C, is an Ore extension of the form C,_t [Y,; r2,,_t][Xm; rzm, S,,], 

where rzrn is a k-algebra automorphism respecting the grading on Cm_1 [Y,; r~,,_r ] and 

62,,, is a k-linear r2,-derivation. q 

Theorem 3.6. The quantized Weyl algebra Agr(k) is an Auslander-regular Cohen- 

Macaulay algebra. 
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Proof. Let C = C, be the associated graded algebra of A = Agr(k), where A is filtered 

by total degree. The previous lemma shows that C is an iterated skew polynomial 

algebra of the form 

and that at each stage the subalgebras are graded by total degree and the automorphisms 

respect the grading. Hence, C is Auslander-regular and CM by repeated applications of 

[19, Lemma]. It now follows that A is Auslander-Gorenstein and CM, by [29, Lemma 

4.41. In fact, A is Auslander-regular, since gl.dimA 5 2n < CO, by [24, Theorem 

7.5.31. Cl 

In order to apply Theorem 1.6 to quantized Weyl algebras, we need to prove normal 

separation. Our method involves localizations in which we invert certain of the zir and 

it would be most convenient if we could reorder the zi so that the ones to be inverted 

all occur at the beginning of the list. However, we can only partially achieve this aim 
- we are unable to bring a Zi that we wish to invert to the front of the list unless Zi_1 

is also to be inverted. Thus, we can move to the front all such zi, resulting in a new 

ordering in which all the zi from an initial string are to be inverted, while those zi later 

in the list which are to be inverted are flanked on each side by zj’s which we do not 

invert. It is these “isolated” zi which we are unable to move forward. The following 

lemma gives the technical details of this procedure. 

Lemma 3.7. Given any subset M (I{ 1,. . , n}, there exist a permutation n E S,, with 

corresponding permutation matrix II and a k-algebra isomorphism 

C$ : A;“.“-“=(k) [9’;!,CMj] --f A:r(k)[T,‘] 

such that 

(a)n-‘(M)={1,2 ,..., mo}U{ml ,..., w} wherem,>m,_l+2fors=l,..., t. 

(b) Each #(yi) = _~,(i) and @(Zi) = uixn(i), where the ui E Z”,‘ZTM and?,,?,, . . . ,Z&, 

j& are the canonical generators of A$nXn-‘m(k). 

Proof. It suffices to show that if there is some r E { 3,. . . , a} such that r, Y - 1 E A4 

while r - 2 6 M, then there exists a k-algebra isomorphism 4 as above, where n = 

(r,r - l,..., 1). Let II be the permutation matrix with entries nij = 6i,nG), and set 

Gil, . . ..%I) = en = (qn41, . . . . qr-l,qr+l,...,qn), 

and ($j) = II-‘ITI = (Yx(i),nG)). Write E and B for the algebras A~“‘“-‘r”(k)[T~,,,)] 

and A$‘r(k)[5T,1], and label the canonical generators for g as ;;i, j;i, q’ where Zi = 

?ij;i - j;i?i and F’ E Z for i E n-‘(M). 

We begin by identifying elements fi,ji E B satisfying the same relations as the 

Zi,yi. First, set ji = y,(i) for all i, and note that 

Si yj = Y74i)Yz( j) = Yx(z)n(j)Yn( j)Yzz(i) = TijFjji 
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for all i, j. Next, set z”i = z;?iz, and 

z,Yix, (i = l), 
ii = z”iXi_i (i = 2,. . . , r), 

Xi (i = r+ l,...,n). 

Since z,_i commutes with x, and yr, we have 

x”ljl -~l~lx”l =Z~l(Xryr -qr_Yr&-) =Z~lzr-l = l 

i’j;, - j,.f, =z2:(x,y, - yrxr) =&r = 21; 

in particular, the notation z”r is justified. Observe that z”i commutes with xi and yi for 

all i # r, while z”ix,. = q; ‘x,z”l and z”i yr = q1 y,.z”l . 
For i = 2,. . . , r, we now have 

( 

i-2 

?i,Fi -+iyi?i =z”l(Xi_*yi_l - qi-lyi-,Xi-1) = 21 1 + C(Qi - 1)YjXj 

j=l > 

i-l i-l 

=z”, + C(G, - l)j$& = 1 + C(& - l)j$& 
I=2 I=1 

If ,?i := fi?i - FiZi, then, similarly, ,Ci = z”i(xi_iyi_i - yi-ixi_1) = ?izi_1. In particular, 
-1 

.fr = z,z,_, = z,_,z,z,_, = z,. Hence, for i = r+ l,...,n we have 

i-l i-l 

iiyi - Giy$i =Xi_Yi - qi_YiXi = 1 + x(41 - l)ylXl = Zr + C (ql - l)ylXl 

1=1 l=r+l 

i-l i-l 

= 5 + c (;il - 1 )j$/ = 1 + C(& - 1 )j+r, 
I=r+l I=1 

while ,Ci := ZiFi - F&?i = xiyi - yiXi = ai. Note that for all i, the element .?i equals a 

unit of B times Zn(i). Thus, ZF1 E B for all i E n-‘(M). 
The next step is to check the relations involving Zi.i!j and ?iyj, which is easy but for 

the number of cases involved. We shall write out the details for the relations involving 

x”ifj and leave the others to the reader. 

= qrYr,j-lz*Xj-1ZzlXr = qlylj”j -1 -- xx (1 < j<r), 

Zlfj = ZFJlXrXj = qrYrjZFJ,XjXr = qrYrjXjZT!lXr = qlylj "j “1 - - x x (r < j), 

Z&fj =ZlXi-lz"lXj_1 = ~i_~~i-~,j-~z"~Xj-~z"~Xi-_1 =qiyijZj.Ci (1 < i < j < r), 

?i+fj =z"lXi_lXj = qi_1yi_l,jXjZlXi_1 = qiyijZjjx"i (1 < i 5 r < j), 

fiZj =XiXj = qiyijXjXi = GiTijZjjx"i (r < i < j). 
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Thus zi?j = qi;ii;ii?j.?i for all i < j. Similarly, 

{ 

h me 

__ ?jiYjxi (i < j) 
Xiyj = 

~j~ji~j:jx”i (i > j). 

Therefore there exists a k-algebra homomorphism 4 : g -+ B such that 4(?i) = x”i and 

f$(y?:) = ji for all i. 
Obviously yi = jn_I(i) E 4(g) for all i, and xi = fi E 4(E) for all i > r. Further, 

zi = 5i E 4(B) for i > r, and since I?-’ E g (because 1 E x-‘(M)) we have 

Zi = z”,‘?i+l E 4(B) for i < Y. Consequently, Xi = z”,‘x”i+t E 4(B) for i = 1,. . .,Y - 1 

and X, = z,_tft E 4(g). For i E M n { 1,. . . ,Y - l}, we have zi’ = 5z’tYt E 4(g) 

because i + 1 E rc-‘(M), while for i E M n {r,. . . ,n} we have zi’ = 4’ E 4(g) 

because i E n-‘(M) (recall that Y = n-‘(r - 1) E x-‘(M)). Therefore 4(B) = B. 

Since B and g are noetherian domains with the same finite GK-dimension (Lemma 

3.4), the kernel of $J must be zero (cf. [ 16, Proposition 3.15 or Corollary 3.161 or [24, 

Corollary 8.3.6(ii)]). Therefore 4 is an isomorphism. 0 

3.8. We next associate with each prime P in a quantized Weyl algebra A a localization 

BP = (A/lp)[&‘] where Zp is a polynormal ideal of A and &p is an Ore set of elements 

normal modulo Z,; Lemma 3.7 provides a key step in analyzing the structure of this 

algebra. Under the assumption that none of the qi is a root of unity, we shall prove that 

spec BP is centrally separated, and then normal separation for spec A follows readily. 

There are only finitely many of the pairs (Zp,ap), and if we group the primes 

associated with each pair (I., a.), we obtain a stratification of spec A analogous to the 

stratification of spec &JJSZ,(C)) into the disjoint sets spec, 0,(%,(C)) for w E S,, x S,, 

used in [ 11, 2.8; 12, Corollary 1.31 (cf. [3, Theorem 1.101). We do not pursue the 

analogy here, except to point out the parallel with the proof of normal separation of 

specCoJSL,(@)) given in [3, Proposition 1.7, Theorem 5.81. 

3.9. Let A = Agr(k) and P E speed, and define the following index sets: 

M={iE{l,...,n} 1 Zi@P}, 

M’={i E {l,...,?Z} 1 yi $! P}, 

M”={i E {l,...,n} 1 Xi 6 P}. 

Since xjyj - yjxj = zj for all j, we see that M GM’nM”. Further, xj and yj commute 

modulo (zj), from which it follows (in view of the relations given in (3.1)) that xj 

and yj are normal modulo (zj). NOW set 

Zp = (Zi 1 i $! M) + (_Yi 1 i $8 M’) + (Xi ( i 6 M”), 

and note that Zp is a polynormal ideal of A contained in P. Next, let &‘p denote the Ore 

set ~?‘M%MJ~\,@MI\M in A. Note that the Xi for i E M” \A4 and the yi for i E M’\M 
are normal modulo Zp, whence the elements of &p are all normal modulo Zp. Since &p 

is generated by normal elements not in P, it follows that the elements of Ep are all 
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regular modulo P. Finally, set 

BP = WPN&,‘I, 

and use a H a” to denote the natural map A 3 A/Ip 5 BP. 

It can be shown that Bp is isomorphic to an iterated skew-Laurent algebra of the type 

described below (provided the qi # 1). However, for our present purposes it suffices 

to exhibit BP as a homomorphic image of such an algebra. 

Proposition. Zf all qi # 1, then Bp is a homomorphic image of an iterated skew- 
Laurent algebra of the form 

B$sr’(k)[w~*; z,][w;‘; z2] . . . [w;‘; q,], 

where 
(a) Q’ is a permutation of a subvector of Q, and I” is a permutation of the 

corresponding submatrix of IT. 
(b) Each Tj is a k-algebra automorphism such that Tj(B?“r’(k)) = B$‘r’(k). 

(c) Zj(wl) E kXwr for 1 < j. 

Proof. Observe that Bp can be obtained from A[T&‘] by factoring out IP[?,?‘;~] and 

then localizing with respect to the image of d p. Hence, an isomorphic algebra results 

if we apply the change of variables for A[S?Z”,‘] given in Lemma 3.7. Thus, there is no 

loss of generality in assuming that A4 = { 1,2,. . . , r} U {ml,. . . , m,} where ml 2 r + 2 

and m, 2 m,_l +2 for s = 2,..., t. In other words, j - 1 and j cannot both belong to 

A4 forj=r+l,..., n. 

Set B,. = B$‘sr’(k) where Q’ = (q 1,. . . , qr) and I” is the upper left r x r block 

of I’. Then B, is a subalgebra of A[Z;‘], and we have a k-algebra homomorphism 

4 : B, + Bp such that &r(Xi) = .Si and &(yi) = jji for i = 1,. . . ,r. Note that 
w-1 

21 ,...,z, --’ all lie in c#+(B,). 

We next observe that for j = r + 1,. . . , n, there is a scalar aj E kX such that 

Zjjj = mjjj?j. If j 6 M, then -;/Fj - yj+i?j = Zj = 0, and we take Ej = 1. On the other 

hand, if j E M, then j > r + 2 and j - 1 6 M. In this case, fjyj - qj?jZj = Zj-1 = 0, 

and we take Uj = qj. 

Now construct the following iterated skew polynomial ring: 

B = B,[u,+l;~r+ll[~r+l;~r+ll...[~n;~nl[~,;~nl, 

where the pj and oj are k-algebra automorphisms satisfying the rules below. 

Pj(Yz I= YjiYi, aj(Vi) = qiYij_Yi (1 I i I r), 

Pj(Ui) = YjiUi, aj(Ui) = 4iYijUi (r < i < j), 

Pj(%) = Yijxi, CTj(Xi) = Sir1 YjiXi (1 I i I r), 

Pj(Q) = YijQ, Oj(Ui) = qilyjiiivi (r < i < j), 

aj(Uj) = UjUj. 
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That automorphisms of this form exist follows from the fact that I$ has commut- 

ing automorphisms I$+, , o;+~, . . . , &,a,” satisfying the given rules; namely, I$ equals 

conjugation by yj and cr; equals conjugation by Xi. 

We claim that & extends to a k-algebra homomorphism 4 : B -+ BP sending 

tij to jjj and nj to Zj for j = Y + l,..., n; this requires checking that the yj and 

_?I satisfy the same relations as the u, and vi. For instance, for i 5 r < j we 

have yjFi = YjiFiyj = $,pj(yi)yI and yjfi = yij?iyj = 4,pj(xi)?j, from which we 

see that Fj&(b) = 4rpj(b)jj for all b E B,. Similarly, Zj+,(b) = $,Oj(bvj for 

all b E B,. Since the relations among jr+l,.Zr+l,. . . ,j,,f,, include those assigned to 

Ur+I,G+l,..., u,,v, (by construction), we conclude that there does exist a k-algebra 

homomorphism 4 as described. 

Finally, set 

J=(Ui 1 i E {r+ l,..., ?Z}\M’)+(Vi)iE{r+l,...,f2}\M”), 

B’ = (B/J)[u,’ 1 i E M’ fl {r + 1,. . . ,n}][vi’ ) i E M” fl {r + 1,. . . ,n}]; 

then B’ can be presented as an iterated skew-Laurent extension of B, satisfying prop- 

erties (b) and (c). By construction, ji = 0 for i 6 M’ and fi = 0 for i 6 M”, whence 

J C ker 4. We claim that ji is invertible in BP for i E M’ n {r + 1,. . . , n} and that x”i 

is invertible in BP for i E M” fl {r + 1,. . . , n}. 

Consider i cz M’n {r+ l,..., rz}. If i 4 M, then yi E 67~ and ji is invertible in Bp 

by construction. If i E M, then i 2 r + 2 and i - 1 6 M. In this case, 

zi = Zi-1 + (qi - l)yi~i E (qi - l)y+i (modIp), 

whence j7iZi = (qi - l)-‘2;. But ,Zi is invertible in Bp because i E M, and thus ji is 

too. A similar argument shows that Zi is invertible in BP for i E M” n {r + 1,. . , n}, 

as claimed. 

Therefore 4 induces a k-algebra homomorphism 4’ : B’ + BP, and we complete 

the proof by showing that 4’ is sutjective. Now yj,.?j E 4(B) C $‘(B’) for all j, and 

5,:’ E @,(B,.) G q!l(B’) for all j < r. We must also show that the inverses of the 

remaining generators of 8~ are contained in the image of 4’. For i E M’ \ M, we 

have i > r and so ji’ = @(ui’ ). Similarly, z?; ’ = @(vl~’ ) for i E M” \ M. Finally, 

considerjEMfl{r+l,..., n}, and recall that j E M’ C’ M”. By construction, uj and 

vj are invertible in B’, whence ~~‘,Z~’ E @(B’). Since Zj = (qj - l)FIZj in this case 

(recall that j - 1 @ M), we conclude that 2,:’ E @(B’), as desired. 

Therefore 4’ is smjective. Cl 

Our final step in proving normal separation for quantized Weyl algebras is to show 

that the iterated skew-Laurent algebras appearing in Proposition 3.9 are polycentral. 

We do this under the hypothesis that none of the qi is a root of )mity. In that case, a 

result of Jordan [ 15, Theorem 3.21 shows that the algebras Bg T (k) are simple, and 

the following extension of Proposition 2.2 yields the desired polycentrality. 
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Proposition 3.10. Let A = B[xF’; zl][x;‘; ~21. + e [x:l; z,,] be an iterated skew-Laurent 

extension where B is a simple noetherian k-algebra, each Zi is a k-algebra aulomor- 
phism such that Zi(B) = B, and Zi(xj) E kXxj for j < i. Then A is polycentral. 

Proof. As in the proof of Proposition 2.2, we just need to show that for any ideals 

I > J in A, there exists an element u E Z \ J which is central modulo J. 

Choose an element u E I \ J of minimum length, say length d. Then u = bl2’ + 
b2XS2 +. . .+ bdxSd for some nonzero elements bh E B and some distinct n-tuples sh E E”. 

After replacing u by u(x” )-‘, we may assume that s1 = (0,. . . , 0). 

Since B is simple, there exist elements ej,fj E B such that xi ejbl fj = 1. Set 

U’ = cj ejufj E I, and observe that u’ = 1 + bixS2 + . . . + b$Q for some b(, E B. 
Consequently, 

u - blu’ = (b2 - blb;)x”’ + . . . + (bd - blb;)xSd 

is an element of I with length less than d, whence u - blu’ E J. Since u $ J, it follows 

that u’ 4: J, and so we may replace u by u’. Thus, there is no loss of generality in 

assuming that bl = 1, that is, u = 1 + b2XS2 + . . . + bdX’d. 
Fix t E {l,..., n}. For h = 2 ,..., d, note that (b&*)x, and q(bhX’*) both lie in 

Bx’~+~I where e, = (0,. . . , 0, 1, 0, . . . ,O) with 1 in the tth position. Hence, uxI -xXtu has 

length less than d, and so ux, - xtz4 E J. Similarly, for b E B we observe that ub - bu 
has length less than d, whence ub - bu E J. Therefore u + J is central in A/J, as 

desired. 0 

3.11. Proposition 3.10 can be improved, if desired. First, it is not necessary to assume 

that B is simple, only that B is T-simple where T is the subgroup of Aut B generated 

by the restrictions of the Zi. Second, one can prove a version analogous to the first 

part of Proposition 2.2. Namely, if 

and if B is T,-simple where Tl is generated by the restrictions of ~1,. . . , ZI to B, then 

Al is polynormal. We leave the details of these extensions to the reader. 

Theorem 3.12. Let A = Agr(k) as in (3.1). rf none of the gi is a root of unity, then 

specA has normal separation. 

Proof. Consider distinct comparable prime ideals P < P’ in specA, and define Ip and 

8~ as in (3.9). Since the elements of &p are regular and normal modulo P, if P’ n 8~ 
is nonempty we immediately obtain a nonzero normal element in P//P. Hence, we may 

assume that P’ n 8~ = 0, and so we obtain distinct comparable primes PBp < P’Bp 
in the localization BP. 

Now BP is a homomorphic image of an iterated skew-Laurent algebra of the form 

B,e’,r’(k)[wfl; z,][w;‘; Q] . . . [W,f’; 7~1 
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as in Proposition 3.9. Since none of the qi is a root of unity, B$‘r’(k) is simple [15, 

Theorem 3.21. Therefore it follows from Proposition 3.10 that Bp is polycentral. In 

particular, there exists a nonzero central element c E Bp/PBp which lies in P’Bp/PBp. 

Then c = c’e-’ for some c’ E P’ \ P and some e E &p, and since e is regular and 

normal modulo P, we conclude that c’ is normal modulo P. Thus we have normal 

separation in all cases. 0 

Theorem 3.13. Let Q = (41,. . . , qn) E (kX )“. If none of the qi is u root of unity, then 
the quantized Weyl algebra Agr(k) is catenary, and Tauvel’s height formula holds 

in AFr(k). 

Proof. All the hypotheses of Theorem 1.6 are satisfied by Affr(k), in view of Propo- 

sition 3.4 and Theorems 3.6, 3.12. 0 

4. Other quantum algebras 

This short final section is devoted to two important algebras for which an extensive 

structure theory is already known - the quantum general linear group and the quantized 

enveloping algebra of a maximal nilpotent subalgebra of a semisimple Lie algebra. We 

begin by discussing the coordinate ring of the quantum general linear group. While it 

is not hard to obtain the Auslander-regular and Cohen-Macaulay properties for general 

multiparameter versions of this algebra, at present normal separation is only known 

in the one-parameter case over the complex field. We ignore the case in which the 

parameter q is a root of unity, since then the quantum general linear group satisfies 

a polynomial identity, and both normal separation and catenarity follow from standard 

PI theory. Normal separation in the case that q is not a root of unity was derived by 

Brown and the first author [3] from Hodges and Levasseur’s fundamental work on the 

quantum special linear group [ 11, 121. 

4.1. We define the one-parameter coordinate ring of quantum matrices over a field k 
as in [28, p. 1451; here the parameter q is any nonzero element of k. This is the k- 
algebra O,(M,,(k)) generated by elements xii for i, j = 1,. . . , n subject to the following 

relations: 

2 
Xi,Xlj = q XljXij (i < I), 

XjjXim = q2XimXfj (j < T?l), 

XimXlj = X[jXim (i < 1 and j < m), 

XijXIm - xlmxij = (q2 - q-2)xi+lj (i < 1 and j < m). 

It is well known that O,@&,(k)) is an iterated skew polynomial extension of k (cf. [9, 

3.11) and hence a noetherian domain, and that this algebra has GK-dimension n2 [25, 

Theorem 3.5.11. 
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Recall that the coordinate ring of the quantum general linear group, Co,(GL,(k)), is 

formed from O&V,(k)) by inverting the “quantum determinant” 

det, X = c( -q-* )‘(“)qo(1)x2,42) . . ‘-G,o(~), 

aL% 

which is a central element in Lo&M,(k)). In particular, O,(GL,(K)) is a noetherian 

domain, with GK-dimension n* (use [16, Proposition 4.21 or [24, Proposition 8.2.131). 

The coordinate ring of the quantum special linear group, 0,(&5,(K)), is the factor ring 

o,(M,(k))/(det,X - 1). The homological properties we require of Lo,(GL,(k)) can 

be obtained from those determined for @,(X&(K)) by Levasseur and Stafford [19], as 

follows. 

Theorem 4.2. The coordinate ring O,(GL,(k)) of the quantum general linear group 

is Auslander-regular and Cohen-Macaulay. 

Proof. First, O,(SL,(k)) is Auslander-regular and CM by [19, Corollary]. By [19, 

Lemma], these properties carry over to the polynomial ring O,(SL,(k))[z,z’] (where z 

and z’ are central indeterminates). Then, since zz’ - 1 is a central regular element of 

O,(SL,(k))[z,z’], [19, Lemma] shows that the factor ring O,(SL,(k))[z,z’]/(zz’ - 1) is 

Auslander-Gorenstein and CM. The latter algebra is isomorphic to the Laurent poly- 

nomial ring O,(SL,(k))[z,z -‘I, and hence to B,(GL,(k)) [19, Proposition]. Therefore 

OJGL,(k)) is Auslander-Gorenstein and CM. On the other hand, 

gl.dim O,(GL,(k)) 5 gl.dim O,(M,(k)) 5 n* < 03, 

because of the structure of O&V,(k)) as an iterated skew polynomial extension of k 
[24, Theorem 7.5.31. Thus O,(GL,(k)) is actually Auslander-regular. 0 

Theorem 4.3. If q E cx is not a root of unity, then spec O,(GL,(@)) has normal 

separation. 

Proof. [3, 6.141. 0 

4.4. Brown and the first author have conjectured that not only spec O,( GL,(k)) but 

also spec O&U,(k)) has normal separation, at least for algebraically closed fields k. 

(In particular, this can be easily checked in the case n = 2.) Since O&&(k)) is 

Auslander-regular and Cohen-Macaulay [19, proof of Corollary], it would then follow 

that O,(M,(k)) is catenary. 

Theorem 4.5. If q E Cx is not a root of unity, then Lo,(GL,(@)) is catenary, and 
Tauvel’s height formula holds in O,(GL,(C)). 

Proof. See Theorems 4.2, 4.3, and 1.6. q 
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Theorem 4.5 of course holds also for 0,(%,(C)), which is a factor of O,(GL,(C)) 

by a height 1 prime ideal. 

Normal separation is known for the quantum coordinate rings O,(G) of connected 

semisimple algebraic groups over C (see [3, Theorem 5.81). We conjecture that these 

algebras are also Auslander-regular and Cohen-Macaulay, hence catenary. 

4.6. Malliavin has recently proved that the quantized enveloping algebra of a maximal 

nilpotent subalgebra of the simple Lie algebra of type BZ over an algebraically closed 

field of characteristic zero is catenary [21, ThCorBme 21. In fact, this conclusion holds 

for the quantized enveloping algebra U,(n+) of a maximal nilpotent subalgebra n of an 

arbitrary finite dimensional semisimple complex Lie algebra g. The normal elements 

needed to apply our method exist by work of Caldero [4], and the requisite homological 

properties follow from results of Ringel [26]. Generators and relations for the quantized 

enveloping algebra of g as defined by Lusztig can be found in [20]; we do not recall 

them here, but only those required for the subalgebra corresponding to U,(n+). 

Let (aii) be the Cartan matrix of g; this is an n x n integer matrix (where n is the 

rank of g), and there exist relatively prime positive integers di such that the matrix 

(diaij) is symmetric. Let Q(q) be a rational function field over Q in an indeterminate 

q, set v = q2, and define U+ to be the Q(v)-algebra with generators El,. . . , E,, subject 

to the relations 

for all i # j, where 

as follows: 

is a vdg-binomial coefficient. These coefficients are defined 

(:)d = 
hIa 

[slap - s]L ’ 
where 

f=l 

The quantized enveloping algebra U,(n’), finally, may be defined as Uf @Q(“) C(q). 

(The algebra U,(n+) is denoted U+ in [4, Section 1.21. In [26], on the other hand, the 

symbol U+ denotes the algebra we have labelled U+.) 

Theorem 4.7. The quantized enveloping algebra U,(k) is an afine noetherian @(q)- 
algebra with jinite GK-dimension. Moreover, U,(n’) is an Auslander-regular, Cohen- 
Macaulay domain. 

Proof. By definition, U,(nt) is an affine C(q)-algebra. 

Ringel has shown in [26, Sections 4,5] that the algebra U+ is an iterated skew 

polynomial ring of the form 
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where the rj are Q(u)-algebra automorphisms such that ri(Xi) 6 c”Xi for i < j, and 

the Sj are Q(o)-linear rj-derivations such that Sj(Xi) (for i < j),is a linear combination 

of monomials in X l+i,. . . ,Xj-1. Further, U+ has a natural Z”-grading under which the 

Xj are homogeneous elements. For I E E, let U,? be the sum of the homogeneous 

components of U+ over those n-tuples (Zi, . . . , I,) E E” for which 11 + . . . + I, = 1. The 

decomposition Ui = @, U,? ’ IS a Z-grading of U+ in which the Xj are homogeneous 

of positive degree. Each iteration Q(u)(Xi, . . . ,Xj-1) is then a connected graded Q(u)- 

algebra, and the automorphism rj respects the grading on Q(u)(Xi, . . . ,?&I). 

All the Q(u)-algebra structure just described for U+ carries over to corresponding 

C(q)-algebra structure for U4(n+). Hence, U,(n’) is a noetherian domain, and iterated 

application of [19, Lemma] shows that U,(&) is Auslander-regular and CM. 

It remains to show that GKdim(U,(n+)) is finite. This follows from iterated appli- 

cation of a slight enhancement of [16, Proposition 3.51. Namely, suppose that A is an 

affine algebra over a field k and B = A[x; z, 61 is a skew polynomial ring constructed 

from a k-algebra automorphism r and a k-linear r-derivation 6. If A has a finite di- 

mensional generating subspace which is r-stable, then GKdim(B) = GKdim(A) + 1. 

We leave the verification of this equality to the reader. 0 

Theorem 4.8. The quantized enveloping algebra U,(k) is catenary, and Tauuel’s 
height formula holds in U&n+). 

Proof. Caldero has shown that every ideal of U,(n+) has a normalizing sequence of 

generators [4, Corollaire 3.21. Normal separation in spec U,(n+) follows immediately, 

and then Theorems 4.7 and 1.6 yield the desired conclusions. 0 

Notes added in proof (January 1996). 

(a) Further studies of prime ideals in quantized Weyl algebras may be found in 

papers of Akhavizadegan and Jordan [31] and Rigal [33]. 

(b) Theorem 1.6 has been applied by Oh to obtain catenarity in the quantum co- 

ordinate rings of symplectic and Euclidean spaces [32]. 

(c) For graded algebras, several of the hypotheses of Theorem 1.6 are redundant, 

due to a recent result of Zhang [34]: In a connected graded noetherian algebra of finite 

injective dimension, normal separation implies the Auslander-Gorenstein and Cohen- 

Macaulay properties, as well as finiteness of the Gelfand-Kirillov dimension. 
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